
The Future of SO_TIMESTAMPING

Jason Xing
<kernelxing@tencent.com>

Content

1. Brief Introduction
2. History
3. Current Status
4. BPF Timestamping Feature
5. Extending BPF Timestamping Feature

Socket Timestamping: Brief Introduction

Brief Introduction

What is SO_TIMESTAMPING feature?

From Willem: Timestamping is key to debugging
network stack latency. With SO_TIMESTAMPING,
bugs that are otherwise incorrectly assumed to
be network issues can be attributed to the
kernel. It can isolate transmission, reception
and even scheduling sources. [1]

Applications have the ability to use this
feature through setsockopt, expecting to study
and analyze closely in kernel behavior. Then
the jitter issue can be effortlessly traced
down to which layer is the cause.

[1]:
https://netdevconf.info/0x17/sessions/talk/so_timestamping-
powering-fleetwide-rpc-monitoring.html

Socket Timestamping: Past and Present

History – 2009 (1)

Patrick Ohly <patrick.ohly@intel.com>
implemented the first edition of socket
timestamping in 2009.

commit cb9eff097831 (“net: new user space API
for time stamping of incoming and outgoing
packets”) defines uAPI in and brings the idea
of report flags and generation flags(4 report
flags VS 3 generation flags)

Commits like commit 51f31cabe3ce5 (“ip: support
for TX timestamps on UDP and RAW sockets”)
supports UDP/RAW sockets.

commit 20d4947353b (“net: socket infrastructure
for SO_TIMESTAMPING”) provides explicit flag
SO_TIMESTAMPING to allow application to enable
the feature through setsockopt().

History – 2009 (2)

Patrick Ohly <patrick.ohly@intel.com>
implemented the first edition of socket
timestamping in 2009.

commit ac45f602ee3d (“net: infrastructure for
hardware time stamping”) implements the
communication framework between kernel and
userspace. After this, many patches add more
generation flags by the virtue of this
mechanism.

History – 2014 (1)

Willem de Bruijn <willemb@google.com>
fulfilled and enhanced socket timestamping in
every aspect in 2009.

- Support TCP and UDP

- Add tskey to correlate each timestamped skb
with corresponding sendmsg

- Add SCHED timestamp on entering packet
scheduler

// One slide don’t have enough room to list all
the important commits, so sorry that I gave up.

Actually more details will be revisited later :)

1. Academic studies (a few year ago): like Dapper and Fathom at
Google

2. More and more hardwares have already supported timestamping
feature.

3. New usage of tskey for UDP like OPT ID CMSG is done.

4. TX Completion feature is coming soon.

5. BPF timestamping is halfway done :)

Current Status

BPF Timestamping Introduction

Let’s optimize it.

1. Applications modification required.

2. System overhead.
• Extra X times calling recvmsg() per send
• “20% degradation” mentioned in previous

netdev

3. uAPI compatability
• It’s not possible to change previous

behavior

4. Inflexibility
• Limited information to output unless we

add more fields in kernel and then upgrade
the kernel.

Optimization Idea

Before 2024, I had been haunted by numerous complicated issues
reported from customers internally. At that time, I totally had
no idea and had not come up with a good approach to have a clear
insight of what happened in history in one of hundreds and
thousands machines. Then I noticed SO_TIMESTAMPING that clearly
and accurately helps us know where the latency issues come from,
application, kernel, driver, physical link... In order to
quickly use the feature in production, I planned to extend
SO_TIMESTMAMPING feature by writing a kernel module so that we
are able to transparently equip applications with this feature
and require no modification in user side. In September 2024, we
discussed at netconf and agreed that bpf is good way to fulfill
it, which was mainly suggested by John Fastabend and Willem de
Bruijn. Since upstreaming the first edition in October 2024,
we’ve been through 13 revisions during nearly 5 months. Martin
supported a significant BPF idea in this. So now I’m grateful…

Many thanks to Martin KaFai Lau, Willem de Bruijn, John
Fastabend, Jakub Kicinski, Vadim Fedorenko for reviewing
and testing this big patchset.

Many thanks to my colleagues, Yushan Zhou and Qian
Huang, for cooperating to develop the robust kernel
module internally.

Background of BPF Timestamping feature

- Add sk_bpf_cb_flags in struct sock.
- Not only for TCP, but more protocols

- Add SK_BPF_CB_FLAGS
- bpf_setsockopt() works becasuse of this

flag

- Add SK_BPF_CB_TX_TIMESTAMPING
- Used in transmit path to see if the flow

needs to be monitored

https://web.git.kernel.org/pub/scm/linux/kernel/
git/netdev/net-next.git/commit/?id=24e82b7c045ba

Implementation – bpf_setsockopt()

https://web.git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next.git/commit/?id=24e82b7c045ba

Implementation – Isolation

- Allow BPF timestamping and socket
timestamping work nearly at the same time.
They works respectively without any
confliction.

https://web.git.kernel.org/pub/scm/linux/kernel/
git/netdev/net-next.git/commit/?id=aa290f93a4a

https://web.git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next.git/commit/?id=aa290f93a4a

Implementation – Correlation

How can we identify the matched skb with its
sendmsg? How can we correlate sendmsg timestamp
with its skb timestamps in every
phase(SCHED/SOFTWARE/ACK)?

- Under the same socket lock protection, BPF
program uses fentry to hook
tcp_sendmsg_locked() and record current
timestamp A.

- In tcp_tx_timestamp(), search skb’s socket
and then call bpf_sock_ops_enable_tx_tstamp()
to tag the corresponding skb with SKBTX if
any.

bpf_sock_ops_enable_tx_tstamp()
{

skb_shinfo(skb)->tx_flags |= SKBTX_BPF;
TCP_SKB_CB(skb)->txstamp_ack |=

TSTAMP_ACK_BPF;
skb_shinfo(skb)->tskey = TCP_SKB_CB(skb)-

>seq + skb->len - 1;
}

https://web.git.kernel.org/pub/scm/linux/kernel/
git/netdev/net-next.git/commit/?id=c9525d240c811

https://web.git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next.git/commit/?id=c9525d240c811

Implementation – SKBTX_BPF

- Introduce SKBTX_BPF

- We have exact four generation flags in BPF
timestamping, SCHED, SW SND, HW SND, ACK

- __dev_queue_xmit() for SCHED timestamp

- Driver xmit (e.g. start_xmit() in virtio_net)

- Hardware PTP timestamp

- __skb_tstamp_tx() for ACK timestamp

https://web.git.kernel.org/pub/scm/linux/kernel/
git/netdev/net-next.git/commit/?id=6b98ec7e882a

https://web.git.kernel.org/pub/scm/linux/kernel/
git/netdev/net-next.git/commit/?id=ecebb17ad818

https://web.git.kernel.org/pub/scm/linux/kernel/
git/netdev/net-next.git/commit/?id=2deaf7f42b8c

https://web.git.kernel.org/pub/scm/linux/kernel/
git/netdev/net-next.git/commit/?id=b3b81e6b009

https://web.git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next.git/commit/?id=6b98ec7e882a
https://web.git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next.git/commit/?id=ecebb17ad818
https://web.git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next.git/commit/?id=2deaf7f42b8c
https://web.git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next.git/commit/?id=b3b81e6b009

Implementation – Selective Sampling

- It’s not realistic to store every timestamp
generated. The limited storage is the problem.

- Add selective sampling function to allow BPF
program to control the frequency of sampling
in real workload.

- Google already adopts this method in
production a few years ago.

https://web.git.kernel.org/pub/scm/linux/kernel/
git/netdev/net-next.git/commit/?id=59422464266f

https://web.git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next.git/commit/?id=59422464266f

Tutorial

SEC("fentry/tcp_sendmsg_locked")
int BPF_PROG(trace_tcp_sendmsg_locked, struct sock *sk, struct msghdr *msg,

size_t size)
{

__u32 pid = bpf_get_current_pid_tgid() >> 32;
u64 timestamp = bpf_ktime_get_ns();
u32 flag = sk->sk_bpf_cb_flags;
struct sk_stg *stg;

if (pid != monitored_pid || !flag)
return 0;

stg = bpf_sk_storage_get(&sk_stg_map, sk, 0,
BPF_SK_STORAGE_GET_F_CREATE);

if (!stg)
return 0;

stg->sendmsg_ns = timestamp;
nr_snd += 1;
return 0;

}

SEC("sockops")
int skops_sockopt(struct bpf_sock_ops *skops)
{

switch (skops->op) {
case BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB:

nr_active += !bpf_test_sockopt(skops, sk, 0);
break;

case BPF_SOCK_OPS_TSTAMP_SENDMSG_CB:
if (bpf_test_delay(skops, sk))

nr_snd += 1;
break;

case BPF_SOCK_OPS_TSTAMP_SCHED_CB:
if (bpf_test_delay(skops, sk))

nr_sched += 1;
break;

case BPF_SOCK_OPS_TSTAMP_SND_SW_CB:
if (bpf_test_delay(skops, sk))

nr_txsw += 1;
break;

case BPF_SOCK_OPS_TSTAMP_ACK_CB:
if (bpf_test_delay(skops, sk))

nr_ack += 1;
break;

}
}

Step by step:

1. bpf_setsockopt in the init phase
2. Record socket and its timestamp in tcp_sendmsg()
3. In each stage, BPF timestamping callback will

be triggered
4. In each callback, BPF program can generate

current timestamp and calculate the latency.

Selftests:
tools/testing/selftests/bpf/progs/net_timestampin
g.c

Noteworthy Points

tx_flags in skb

- We’re running out of precious
skb_shinfo(skb)->tx_flags

- Willem has already reclaim one by removing
SKBTX_HW_TSTAMP_USE_CYCLES.

- If the Bluetooth series adds the TX
COMPLETION flag, no more available bit

- We’re going to add SKBRX_BPF that works in
the receive path for BPF timestamping. Will
we continue to free up one bit?

Discussion can be seen at the following link:
https://lore.kernel.org/netdev/67b7b88c60ea0_292
289294bb@willemb.c.googlers.com.notmuch/

No lock protection

- Without any socket lock protection, it might be
not that accurate to acquire the fields from
struct sock and friends.

Eric Dumazet once mentioned this at 2024 netconf

What are left to complete in BPF timestamping?

- UDP support

- RX support

Don’t worry. I’m working on it. Hopefully the
remaining part will be finished in the first
half of year.

uAPI compatability problem still exists…

- It seems not possible to solve this issue

https://lore.kernel.org/netdev/67b7b88c60ea0_292289294bb@willemb.c.googlers.com.notmuch/

How to solve Interference Impact Issue?

Every skb sent from every send syscall
will go into the BPF program many times.

It will affect unmatched flows, which
is against our expectations, causing
inevitable performance degradation in
real workload. We’ve seen that many
times!

The right graph is how normal BPF based
programs work. More complicated the
prog is, more performance degradation
it brings.

What Is Interference Impact?

BPF timestmaping mitigates most of
the impacts of interference.

Good news is we only have one place
to handle in tcp_sendmsg_locked().

Bad news is we still have one place
to handle in tcp_sendmsg_locked().

BPF Timestamping Has The Same Issue?

Before getting deeply into this
chapter, let’s revisit a little bit
on how we use in BPF timestamping
case first.

The left code snippet shows the
only place where we try fentry to
hook tcp_sendmsg_locked().

Q: So the question is does it
really matter?
A: Yes, it does matter!

Revisit How We Use Fentry

fentry function is light-weighted
and outperforms than bpftrace but
it still bring ungelectable impact.
We expect real ZERO impact on
unmatched flow in the transmit path.

The reason behind it is that we
indeed see a performance decrease
after loading kernel module working
similarly to BPF program in
selftests.

Based on that I assume fentry has
the same issue as ftrace.

How does fentry work?

Light-weighted GCC –mfentry Feature

TEST 1: do nothing in libbpf program

taskset -c 1 netperf -H 127.0.0.1 -t TCP_STREAM

pps: 151935 pkts/sec
thr: 3432003 KB/sec

With fentry:
26145.01 10^6bits/sec

Without fentry:
27413.65 10^6bits/sec

The number decreases by 4.6%!!

Good new is that I’m unable to see degradation in
other tests.

Fentry Impact (1)

TEST 2: read addr/port/pid only in libbpf program

taskset -c 1 netperf -H 127.0.0.1 -t TCP_STREAM

pps: 151935 pkts/sec
thr: 3432003 KB/sec

With fentry:
25465.29 10^6bits/sec

Without fentry:
27413.65 10^6bits/sec

The number decreases by 7.1%!!

Fentry Impact (2)

Add a new BPF timestamping callback
in the very beginning of
tcp_sendmsg() to replace the fentry
usage that can be seen in selftest.

It’s done by the virtue of
SK_BPF_CB_TX_TIMESTAMPING flag and
noinline function.

Finally libbpf program would not
have any impact on the normal flows
that are not expected to be traced.

How to Avoid tcp_sendmg Fentry Impact?

With that new callback introduced,
then the issue will be solved.

Zero Interference Impact

Tracing every skb for BPF timestamping?

TCP

The feature interprets a send
call on a bytestream as a
request for a timestamp for the
last byte in that send() buffer.

tcp_tx_timestamp()
{

sock_tx_timestamp(sk, sockc,
&shinfo->tx_flags);

}

https://git.kernel.org/pub/scm/l
inux/kernel/git/torvalds/linux.g
it/commit/?id=4ed2d765dfacc

Current Implementation of TCP Flow

UDP

If the big outgoing packet is
fragmented or cumulative packets
are sent, then only the first
fragment/packet is timestamped.
However, it rarely happens in
pratice. Now we assume all the
UDP skbs are timestamped due to
protocol nature.

__ip_append_data()
{

skb_shinfo(skb)->tx_flags =
cork->tx_flags;

cork->tx_flags = 0;
}

https://git.kernel.org/pub/scm/l
inux/kernel/git/torvalds/linux.g
it/commit/?id=51f31cabe3ce5

IP fragmentation caselen < mtu case

Current Implementation of UDP Flow

The right side graphs illustrate
everything - make sure each skb is
time stamped.

But how?

Outline of Tracing Every SKB

Keep in mind that:
1. GSO is on as a default setting

for TCP.

We will do:
1. Tag the skb in allocation period,

say, tcp_skb_entail().
2. In skb creation phase, call

bpf_skops_tx_timestamping() to
let BPF program selectively
sample.

pseudo code:
tcp_skb_entail()
-> __sock_tx_timestamp(tsflags, tx_flags);

// for example
-> flags |= SKBTX_SCHED_TSTAMP;
// or
-> bpf_skops_tx_timestamping()

Tracing Every SKB for TCP (1)

We will do:
1. Handle tso_fragment() which might

split the big packet into two
skbs and only tag the last one.

Before:
tso_fragment()
-> tcp_fragment_tstamp()
// swap the old and new skb
-> shinfo->tx_flags &= ~tsflags;
-> shinfo2->tx_flags |= tsflags;

After:
tso_fragment()
-> tcp_fragment_tstamp()
// tag both skbs
-> shinfo->tx_flags |= tsflags;
-> shinfo2->tx_flags |= tsflags;

Tracing Every SKB for TCP (2)

We will do:
1. Handle tcp_gso_tstamp() case to

make sure each skb is time stamped.

Before:
tcp_gso_tstamp()
-> while (skb) {

if (before(ts_seq, seq + mss)) {
skb_shinfo(skb)->tx_flags |=

SKBTX_SW_TSTAMP;

After:
tcp_gso_tstamp()
-> while (skb) {

skb_shinfo(skb)->tx_flags |=
SKBTX_SW_TSTAMP;

Tracing Every SKB for TCP (3)

Keep in mind that:
1. In almost all the cases,

application sends a small packet,
so there will no more fragments.

2. udp_cork or MSG_MORE option is
seldomly used.

We will do:
1. Handle __ip_append_data() case.

Before:
__ip_append_data()
-> tcp_fragment_tstamp()
// the initial fragment is time stamped
-> skb_shinfo(skb)->tx_flags = cork-

>tx_flags;
-> cork->tx_flags = 0;

After:
__ip_append_data()
-> tcp_fragment_tstamp()
// each fragment is time stamped
-> skb_shinfo(skb)->tx_flags = cork-

>tx_flags;
-> // cork->tx_flags = 0;

Tracing Every SKB for UDP (1)

We will do:
1. No need to handle

__udp_gso_segment() case? Since 1)
hardware can only have one
outstanding TS request at a time,
2) udp gso is not widely used.
Otherwise, skb has already been
fragmented to MSS sized seg in IP
layer.

Before:
__udp_gso_segment()
// only the first one keeps the tag
-> skb_shinfo(seg)->tx_flags |=

(skb_shinfo(gso_skb)->tx_flags &
SKBTX_ANY_TSTAMP);

After:
__udp_gso_segment()
-> // iterate the linked list from

// the first seg, then set each one

https://web.git.kernel.org/pub/scm/l
inux/kernel/git/torvalds/linux.git/c
ommit/?id=76e21533a48b

Tracing Every SKB for UDP (2)

https://web.git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=76e21533a48b

Merits:

- It helps us know the explicit
latency between each skb, which
approaches to some open sources
that are developed based BPF, like
Retis.

- It can be a good temporary tool to
debug the kernel locally.

- It focus more on the kernel/stack
itself instead of previous
isolation function.

Merits vs Demerits

Demerits:

- It’s not that realistic to deploy
normally in production. The
shortage of storage remains a
problem.

The Future of BPF Timestamping

What Is The End?

Can we thoroughly settle down the latency boundary issue like
previously mentioned Retis? A more fine-grained solution is
still appealing to me…

Will we add more hooks like in tcp_write_xmit() to see why the
skb is not sending to the Qdisc by using kfunc?

Now we have a better view of kernel behavior…

“Once the lifetimes of messages are constructed, they can be compared to identify anomalous processing that led to
their latency deviations.” ———— from How to diagnose nanosecond network latencies in rich end-host stacks NSDI’22

Left CDF graph shows 90% flows complete transmitting every skb less than 1 ms
while the right one shows less than 6ms.

Is It Possible to Replace tcpdump?

high-performance VM slow VM

Explore to leverage numerous real data?

Now we have so much useful information sent by the kernel, can
we have a good approach to analyzing them? Or else, what a huge
waste!

Thank you all !!!

